This shan't take too long, so you better don't leave this page.

\(\text{ m}^2\)



\begin{equation} \text{Variability}\,\,V\,\,\text{for shape region}\,\,r\,\,\text{in pixel}\,\,P\,\,\text{at discrete point}\,(a,\,b)\,\text{is calculated as} \end{equation} \begin{equation} V_r(a,b)=\left(\left(\frac{P(a,b)}{\mu} - 1\right)\times F_{ex} + 1\right)\times 100 \end{equation} \(\text{being}\,\,F_{ex}=\) \(\text{an exacerbation factor}\) \begin{equation} \text{If you choose}\,\,\color{blue}{\text{Local}}\,\,\implies\mu=\sum_{i,j}{\frac{P(i,j)}{\vert r'\vert}}\,\,\text{where}\,\,(i,j)\in r' \end{equation} \begin{equation} \text{If you choose}\,\,\color{blue}{\text{Global}}\,\implies\mu=\sum_{i,j}{\frac{P(i,j)}{\vert R'\vert}}\,\,\text{where}\,\,(i,j)\in R'\,\wedge\,r\subset R,\,\forall r \end{equation} \(\text{Anyway,}\,\,r'\,\,\text{and}\,\,R'\,\,\text{are inner-buffered from}\,\,r\,\,\text{and}\,\,R,\,\text{being radius} =\) \(\text{ m}\) \begin{equation} \text{Relation between discrete point}\,(a,\,b)\,\text{and real point}\,(x,\,y)\,\text{is calculated as} \end{equation} \begin{equation} x = x_{min}+a\times\mathrm{d}x\,\,\,\,\,\,\,\,\, y = y_{max}-b\times\mathrm{d}y \end{equation} $$(x_{min},\,y_{max})\,\,\text{is the real point located at top-left corner}\\ \mathrm{d}x\,\,\text{is the pixel horizontal resolution in longitude unit}\\ \mathrm{d}y\,\,\text{is the pixel vertical resolution in latitude unit}$$
\(\text{Ok, I got it. Now}\) \(\text{MZM}\)