|
\begin{equation}
\text{Variability}\,\,V\,\,\text{for shape region}\,\,r\,\,\text{in pixel}\,\,P\,\,\text{at discrete point}\,(a,\,b)\,\text{is calculated as}
\end{equation}
\begin{equation}
V_r(a,b)=\left(\left(\frac{P(a,b)}{\mu} - 1\right)\times F_{ex} + 1\right)\times 100
\end{equation}
\(\text{being}\,\,F_{ex}=\)
\(\text{an exacerbation factor}\)
\begin{equation}
\text{If you choose}\,\,\color{blue}{\text{Local}}\,\,\implies\mu=\sum_{i,j}{\frac{P(i,j)}{\vert r'\vert}}\,\,\text{where}\,\,(i,j)\in r'
\end{equation}
\begin{equation}
\text{If you choose}\,\,\color{blue}{\text{Global}}\,\implies\mu=\sum_{i,j}{\frac{P(i,j)}{\vert R'\vert}}\,\,\text{where}\,\,(i,j)\in R'\,\wedge\,r\subset R,\,\forall r
\end{equation}
\(\text{Anyway,}\,\,r'\,\,\text{and}\,\,R'\,\,\text{are inner-buffered from}\,\,r\,\,\text{and}\,\,R,\,\text{being radius} =\)
\(\text{ m}\)
\begin{equation}
\text{Relation between discrete point}\,(a,\,b)\,\text{and real point}\,(x,\,y)\,\text{is calculated as}
\end{equation}
\begin{equation}
x = x_{min}+a\times\mathrm{d}x\,\,\,\,\,\,\,\,\,
y = y_{max}-b\times\mathrm{d}y
\end{equation}
$$(x_{min},\,y_{max})\,\,\text{is the real point located at top-left corner}\\
\mathrm{d}x\,\,\text{is the pixel horizontal resolution in longitude unit}\\
\mathrm{d}y\,\,\text{is the pixel vertical resolution in latitude unit}$$
|